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Petrov-Galerkin methods based on piecewise linear interpolants for the Korteweg-de Vries 
and related equations are studied. Both accuracy and stability are analysed for the linearised 
case. It is shown that in the nonlinear case the order of accuracy of the standard Galerkin 
procedure is reduced and an alternative technique is therefore proposed which retains the 
fourth-order accuracy in space. This is found to perform well when compared with finite 
difference or other finite element schemes. 

1. INTRODUCTION 

The Kortewegde Vries (KdV) equation 

Ut + uu, + EU,,, = 0, E > 0, (1.1) 

and several of its generalisations play a major role in the study of nonlinear 
dispersive waves. Examples range from water waves and lattice waves to plasma 
waves. 

The numerical solution of (1.1) and related equations has been the subject of many 
papers over the last few years. Greig and Morris [4] propose a Hopscotch method 
and compare it with the original Zabusky-Kruskal leap frog scheme [lo]. Alexander 
and Morris [l] study Galerkin methods based on those given by Wahlbin [9], which 
include the possibility of an additional dissipative term. The Korteweg-de 
Vries-Burgers (KdVB) equation 

24, + uu, - vu,, + EU,,, = 0, v, E > 0, (1.2) 

is solved by Canosa and Gazdag (31 using finite Fourier transform techniques. 
The present work concerns itself with Petrov-Galerkin finite element methods in 
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which different trial and test functions are used (see Anderssen and Mitchell [2] for a 
discussion). To keep the computational effort as low as possible the interpolant is 
chosen to be piecewise linear; the corresponding test functions are taken to be 
piecewise cubic with C’ continuity. 

Following a description of the numerical procedure in Section 2, we analyse the 
resulting equations in the linearised case in Section 3. Section 4 shows that for the 
nonlinear case the accuracy of the Petrov-Galerkin procedure is reduced and to 
maintain a method fourth-order accurate in space an alternative technique is 
proposed. In the final section we present some numerical experiments which appear 
to show a marked improvement over other suggested methods. 

Although the methods in this paper are only presented for the KdV equation the 
ideas can be applied also to similar equations which involve nonlinearities and 
dispersion. 

2. DESCRIPTION OF METHOD 

We attempt to solve Eq. (1.1) together with the initial condition 

u(x, 0) = f(x), -co<x<co. P-1) 

We assume that the problem has a unique solution such that, for fixed t, U(X, t), 
together with all its x derivatives, tends to zero as Ix]--) co. Conditions on f guaran- 
teeing existence and uniqueness are given by Lax [5] and Sjoberg 181. 

Multiplying (1.1) by v(x), a twice differentiable function, and integrating by parts 
we obtain 

(u, 3 v) + (uu,, v) + E&.9 u,,) = 0, (24 

where ( , ) denotes the usual L, inner product 

cf, 8) = irn f(x) i?(x) &. -03 
We introduce finite elements in space in (2.2) and approximate the exact solution 

by 

u(x9 t, = i Ui(t) $i(x)9 
i=O 

(2.3) 

where the trial functions )i(x), i = 0, l,..., n, have compact support. The unknown 
functions vi(t), i = 0, 1 ,...,n, are determined from the system of ordinary differential 
equations 

(Ut, Vj) + tuux3 Wj) + E(".rv (Vj).rx)= '7 (2.4) 
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j = 0, I)..., n, subject to appropriate initial conditions which can be obtained from 
(2.1). The essential feature of the Petrov-Galerkin method lies in the fact that the test 
functions wj, j = 0, l,..., n, need not be the same as the trial functions. 

It should be noted that the approximant (2.3) has compact support. This is no 
drawback since the type of problem under consideration exhibits exponential decay as 
(x] + co. Other upstream/downstream conditions can be accommodated by a suitable 
modification of the approximant. 

We introduce a grid x,, < xr < a.. < x, with uniform spacing h and define #r(x) to 
be the usual piecewise linear hat function associated with the node x1, i = 0, l,..., n 
(i.e., #,(xj) = 6,, the Kronecker delta). With this choice of trial functions 
V(Xi) f) = v,(t). 

The integration by parts which had to be performed to arrive at formula (2.4) 
provides us with the possibility of introducing a Co interpolant, resulting in a much 
lower computational effort than that found when using splines or Hermite cubits, 
which would be necessary if identical trial and test functions were used. This 
approach is analogous to the H-‘-Galerkin method of Rachford and Wheeler [7]. 

The support of the test functions is chosen to be an interval of length 4h, in order 
to give a &e-point replacement for uXXX. It is clear from (2.4) that C’ continuity is 
necessary for the test functions. With these requirements in mind we define 

WiCx) = W((x - x0)/h - 9, i = 0, l,..., n, (2.5) 

where v(x) is a C’ function with support [-2,2] and which reduces to a cubic 
polynomial in each of the intervals [i, i + 11, i = -2, -1, 0, 1. Clearly there is a six 
parameter family of such piecewise cubits and an individual member of the family 
can be specified by the values ai = y(i), fit = y’(i), i = -l,O, 1. We can write w in 
terms of the basis functions for the Hermite cubic interpolation as follows. Define 

- 1)’ (2 Ix/ + 1) if Ix]< 1 
otherwise, 

P(x)= o 

I 

x(l-4 - 1)’ if Ix]<1 
otherwise, 

SO that o(O)= 1, o(-l)=u(l)=O, a’(-l)=a’(O)=o’(l)=O, and p’(O)= 1, 
p’(-l)=p’(l)=O,p(--l)=p(O)=p(l)=O. Now 

v/(x)=~-,0(x+ l)+a,u(x)+a,o(x- l)+P-&+ 1) 
+ BoP(X) + PlP@ - 1). P-6) 

With wj given by (2.5) and (2.6), the system (2.4) becomes, after tedious 
evaluations of the inner products: 
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(wO)K9a, + 2P,) G+, + Pa0 + 42a, + 2&J iri+ I 
+ (42a, + 9a, + 9ap 1 - 2/3, + 2p-,) i’i 

+ (9a, + 42a-, - 2/3,) Oi-, t Pa-, - 2P-,) ir,-,] 

+ WO~jK% + 2PJ q+, + (1% + PA Ui+ 1 U,+Z 
+~9~o+2Po-6P,)~+,+t12~o-12~,+PotP,)~i~i+~ 
+ Pa-, - 9a, - 6P, t 2/L, t 28,) V: 
-(12a,-12a_,-Bo-P-1)Ui-1Ui-(9a,-28,t6P-,)~-, 

- (12a-, -P-l> ui-*“i-l - Pa-, -2P-1) Uf-21 
+ tEIh3)[-PI Ui+2 + t2Pl -PO) ui+l + t2PO-Pl -P-l) ut 

+(2P-,-PO)ui-*-8-,u,-2]=o, (2.7) 

where i = 0, l,..., n, and we set U-, = U-i = U,, + i = U,,, r = 0. Since multiplication 
of v(x) by a constant does not alter Eqs. (2.7), only five essential parameters among 
ai, pi, i = -1, O,l, remain. Furthermore, application of Taylor expansions to (2.7) 
show that, to give approximations consistent with (l.l), additional conditions are 
required. In this way we arrive at the following set of constraints: 

a-, t a0 t a, = 1, 

P-, tPo+A =o, 

p-1 -/31= 1. 
P-8) 

The remaining three parameters can be used to vary the degree of asymmetry in the 
test functions. This enables us to introduce upwinding into our numerical schemes, 
which, in a convection dominated situation can be very useful (see for example 
Mitchell and Christie [6]). However to study travelling waves, emphasis should be 
placed on conservation properties and it will be clear from the following analysis that 
this can be achieved by using symmetric test functions. We therefore obtain the 
additional constraints : 

a-] =a,, 

P-l = -P,, (2.9) 

p. = 0. 

Hence, from (2.8) and (2.9) /I-, = 4, & = -4, which leaves a, (say) as the only free 
parameter. When a, = {, v(x) reduces to the well-known Schoenberg cubic spline and 
continuity is increased to C2. In what follows we shall assume that conditions (2.8) 
and (2.9) apply and consider a family of test functions w(x) depending on the single 
parameter a = a,. 
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3. LINEARISED EQUATION 

In this section we look at the linearised KdV equation 

L(u) E u, + ,uu, + EU,,, = 0, (3.1) 

where y is a constant. With the test and trial functions defined previously, the linear 
analogue of Eq. (2.4) is 

faJ+su=o, (3.2) 

where U = [u,,(t), u,(t),..., U,(t)lT, the dot denotes differentiation with respect to t, 
and M and 5’ are live-band (n + 1) X (n + 1) matrices. M is usually called a mass 
matrix. The system (3.2) is given explicitly by 

Lh(Ui) s (1/60)[(9a - 1) i?,,, + (9 + 24a) iri+, t (44 - 66a) ir, 

t (9 + 24a) Oi+l t (9a - 1) Oi-21 
+ @/24h)[(12a- 1) Ui+a t (14~24a) Ui+l 

- (14 - 24~~) Vi-i - (12a - 1) Vi-z] 

+ (E/2h3)[Ui+2 - 2Ui+ 1 t Z”i-l - ui-2] = O, 

where i = 0, I,..., nandweset U-2=U-,=U,,+,=U,,+2=0. 
For general a, Taylor expansion gives 

(3.3) 

L&) = L(u) + O(h2), (3.4) 

which is second-order accurate. However when a = l/6 (Schoenberg spline case) the 
truncation error is 

&I(U) - Jw) = (h2/4)(L@)),, + ow (3.5) 

which, upon using (3.1), is seen to be fourth-order accurate. 
Next we consider the conservation properties of the scheme. Multiplication of (3.2) 

by UT yields 

uwtl t u=su = 0. (3.6) 

The skew symmetry of S implies that UTSU = 0 and, due to the symmetry of i’t4, 
(3.6) becomes 

$ (Uwu) = 0. (3.7) 

Furthermore, the matrix M can be shown to be positive definite and diagonally 
dominant provided l/9 < a < 7/33, in which case (UrA4U)1’z is a norm for U. 

If the system of ordinary differential equations (3.2) is solved by means of the 
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trapezoidal rule (Crank-Nicholson), application of the familiar von Neumann 
stability test reveals that the amplification factors have modulus unity, thus guaran- 
teeing unconditional stability and conservation of the amplitude of the Fourier modes. 

Note that (3.2) is an implicit system of ODE’s and hence any method for the 
discretization in time will result in a implicit scheme, unless the mass matrix M is 
lumped. 

4. NONLINEAR CASE 

Returning to the KdV equation (l.l), the system (2.4) can be written as 

McJ+s(tJ)=o, (4.1) 

where M and U are as defined in the linear case and S(U) is a nonlinear vector 
function. The ith component of Eq. (4.1) is of the form (3.3) except for the fact that 
the term involving iu is replaced by 

(1/120h)[(18o-2) fl+, + (24o- 1) Ui+zUi+, + (24-36~~) q+r 
+ (23 - 72a) Ui+ , lJi - (23 - 72a) Ui Vi-, - (24 - 36a) b’- 1 
- (24a - 1) U,-, U,-, - (18a - 2) qe2]. (4.2) 

Taylor expansions again reveal that, for any a, the method is second-order accurate. 
However for a = l/6 the 0(/z’) term can no longer be cancelled and the higher order 
of the linearised problem cannot be attained. A means of recovering fourth-order 
accuracy in space is now described. We rewrite (1.1) in the form 

u, t (u2/2), + EU,,, = 0 (4.3) 

and note from (3.3) that, in the linear case with a = l/6, u,(xi) is replaced by 

(1/24h)[Ui+* + lOUi+l - lOUj_, - Vi-*]* (4.4) 

By analogy we approximate (u*/2), jXi by 

(1/48h)[U;+, t lOq+, - lOU;-, - VP*]. (4.5) 

Of course a subsequent Taylor expansion reveals that the truncation error of the 
resulting method is now O(h4) as in the linear case. (In fact, all one has to do is to 
replace u by u* in the expansion corresponding to the linear case.) 

Expression (4.5) can be generated by the described Petrov-Galerkin process 
provided the approximation 

U’(x, t) = 2 u;(t) qbi(X) (4.6) 
i=O 

is used in the term ($*),. 
This technique is clearly capable of handling any nonlinear term of the form 

F(u)),. 
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5. NUMERICAL RESULTS 

In order to compare the method outlined in this text with some others available, we 
consider the initial value problem given by (1.1) and the initial condition 

f(x) = 3c sech’(kx + d) (5.1) 

with c = 0.3, E = 0.000484, k = (c/~E)~“, and d = -k. This problem was used in 
[ 1,4] and has the theoretical solution 

u(x, t) = 3c sech2(kx - kct + d) 

representing a single soliton with amplitude 0.9. 

(5.2) 

We further take x0 = 0, and x, = 2 since, outside this region, the solution is 
negligibly small over the range of time used (0 Q t < 1). Equation (4.1) was solved 
with a = l/6, first without modification (Petrov-Galerkin method) and then with 
(4.2) replaced by (4.5) to obtain the fourth-order accurate method. The trapezoidal 
rule with step length r was employed to advance the solution in time and the resulting 
system of nonlinear equations solved by Newton iteration. The required initial 
condition U(0) was obtained interpolating f(x) at xi, i = 0, l,..., n. Numerical results 
are displayed in Table I, where those given by [4] are also included for comparison. 

First of all we note that as h gets smaller, the error in the modified scheme decays 
considerably quicker than in the standard Petrov-Galerkin case, demonstrating its 
higher order of accuracy in space. 

At h = 0.01 the errors associated with the modified scheme are negligible 
compared with both finite difference methods, even though the time step is greater by 
a factor of 10. Indeed, comparable accuracy is obtained between finite differences 
with h =O.Ol, t =0.0005 and the modified scheme with h = 0.033, r= 0.01. This 
balances the fact that one finite difference step is cheaper to execute than one finite 
element step, since the latter requires Newton iteration. 

Alexander and Morris [l] use the Galerkin method with cubic splines as trial and 
test functions and include the possibility of an additional dissipation term. With 
h = 0.05, t = 0.39, and exact time integration, they report a maximum error ranging 
between 0.025 and 0.059, according to the chosen value of the dissipation parameter; 
for h = 0.033 and t = 0.46 the error presented is of the order 0.015. We observe from 
Table I that the modified scheme improves on these errors. It should be pointed out 
that the band widths in the matrices are five for the present scheme and seven for 
Galerkin methods with splines. However, the large computation times quoted in [l] 
are largely attributable to the use of a computer package for the time integration. 

Our schemes were also tested satisfactorily in cases of soliton interaction. No 
spurious oscillations were found to appear. 

Finally, the KdVB equation (1.2) was solved with the initial condition (5.1). When 
E = 0.000484 and v = 0.01 the solution behaves like a travelling wave in which the 
amplitude is damped. Dissipation dominates over convection when v is increased to 
0.1 and the solution evolves in time in a manner similar to that for the heat equation. 
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6. CONCLUSIONS 

A scheme for the numerical solution of equations governing nonlinear dispersive 
waves has been proposed. The new method gives a significant improvement, both 
from the point of view of accuracy and efficiency, over others which are currently 
available. 

The Petrov-Galerkin approach enables us to use a Co interpolant, resulting in a 
much lower computational effort than that associated with the standard Galerkin 
method based on splines or Hermite cubits. Also the possibility of introducing asym- 
metric test functions (upwinding) has been presented. 

The order of accuracy of approximations to linearised equations is generally higher 
than that for the corresponding nonlinear equation and a technique has been 
developed for improving the latter. 
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